LULC Classification and Topographic Correction of Landsat-7 ETM+ Imagery in the Yangjia River Watershed: the Influence of DEM Resolution
نویسندگان
چکیده
DEM-based topographic corrections on Landsat-7 ETM+ imagery from rugged terrain, as an effective processing techniques to improve the accuracy of Land Use/Land Cover (LULC) classification as well as land surface parameter retrievals with remotely sensed data, has been frequently reported in the literature. However, few studies have investigated the exact effects of DEM with different resolutions on the correction of imagery. Taking the topographic corrections on the Landsat-7 ETM+ images acquired from the rugged terrain of the Yangjiahe river basin (P.R. China) as an example, the present work systematically investigates such issues by means of two commonly used topographic correction algorithms with the support of different spatial resolution DEMs. After the pre-processing procedures, i.e. atmospheric correction and geo-registration, were applied to the ETM+ images, two topographic correction algorithms, namely SCS correction and Minnaert correction, were applied to assess the effects of different spatial resolution DEMs obtained from two sources in the removal of topographic effects and LULC classifications. The results suggested that the topographic effects were tremendously reduced with these two algorithms under the support of different spatial resolution DEMs, and the performance of the topographic correction with the 1:50,000-topographic-map DEM was similar to that achieved using SRTM DEM. Moreover, when the same topographic correction algorithm was applied the accuracy of LULC classification after topographic correction based on 1:50,000-topographic-map DEM was similar as that based on SRTM DEM, which implies that the 90 m SRTM DEM can be used as an alternative for the topographic correction of ETM+ imagery when high resolution DEM is unavailable.
منابع مشابه
Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملAtmospheric / Topographic Correction for Satellite Imagery ( ATCOR - 2 / 3 User Guide , Version 8 . 2 BETA , February 2012 )
2 The cover image shows a true color subset of a Landsat-7 ETM+ scene with lake Constance at the Austrian-German-Swiss border (top left), acquired 2 June 2000. The top right image is the atmospherically corrected scene employing a haze removal over land and water. The haze removal over water is one of the new features of the 2011 release. The bottom part presents a zoomed view. The water mask i...
متن کاملMulti-Temporal Assessment of Mangrove Forests Change in the Coastal Areas of Bushehr Region Based on Landsat Satellite Imagery
Continual access to precise information about the land use/land cover (LULC) changes of the Earth’s surface is extremely important for any sustainable development program in which LULC serves as one of the major input criteria. In this study, a supervised classification was applied to three Landsat images collected in 1986, 1998and 2018, providing mangrove forests change data in the coastal are...
متن کاملComparison of Topographic Correction Methods
A comparison of topographic correction methods is conducted for Landsat-5 TM, Landsat-7 ETM+, and SPOT-5 imagery from different geographic areas and seasons. Three successful and known methods are compared: the semi-empirical C correction, the Gamma correction depending on the incidence and exitance angles, and a modified Minnaert approach. In the majority of cases the modified Minnaert approac...
متن کاملApplication of Remote Sensing in Assessing Land Use Changes in Haraz Watershed
Aims: Land-use change due to human activities is one of the important issues in regional and development planning. The aim of this study was to detect land-use changes using Landsat TM, ETM+, IRS and ASTER satellite imagery. Methodology: In this quasi-experimental study, land-use changes in the Haraz watershed over a 23-year period were evaluated. For this study, images of 1992 TM, ETM + 2002, ...
متن کامل